
Eur. Phys. J. B 41, 177–184 (2004)
DOI: 10.1140/epjb/e2004-00307-6 THE EUROPEAN

PHYSICAL JOURNAL B

Microwave propagation in two dimensional structures using lossy
cylindrical glass rods

E.D.V. Nagesh1, G. Santosh Babu1, V. Subramanian1,a, V. Sivasubramanian2, and V.R.K. Murthy1

1 Microwave Laboratory, Department of Physics, Indian Institute of Technology, Madras, Chennai, 600 036, India
2 Material Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603 102, India

Received 26 September 2003 / Received in final form 26 April 2004
Published online 12 October 2004 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2004

Abstract. Two dimensional microwave band gap structures have been constructed using lossy cylindrical
glass samples (ε′ = 5.5 and ε′′ = 0.1). The power transmission spectra observed between 10 and 20 GHz
for both square and triangular structures with three different lattice spacing (2.5, 1.4 and 0.9 cm) are
explained in terms of the lattice spacing, filling fraction and loss tangent. The experimental results and
the theoretical values agree well for the structures having higher filling fraction. Also, the values predicted
from the scaling procedure agree well with the experimental values. The appearance of acceptor modes
due to the introduction of defects in these structures is also reported.

PACS. 41.20.Jb Electromagnetic wave propagation; radiowave propagation – 42.25.Fx Diffraction and
scattering

1 Introduction

The propagation of electromagnetic radiation through a
periodic arrangement of dielectric material has attracted
many researchers [1–5] and has stimulated intensive fun-
damental and applied research. These structures called
Photonic Band Gap (PBG) structures or photonic crys-
tals (PCs) can be constructed over a wide frequency range
from the microwave to the visible region. PBG structures
are used for devices such as filters, reflectors, waveguides,
antennas, optical switches etc. The waveguides using PBG
structures are efficient compared to conventional waveg-
uides due to a wide range of allowed frequencies and zero
loss near the bends [6]. The electromagnetic waves trav-
eling through such structures experience a periodic varia-
tion of dielectric constant similar to the periodic potential
energy of an electron in an atomic crystal. Therefore, like
the electronic state in an atomic crystal, the photonic state
in a photonic crystal can be classified into bands and gaps,
the frequency range over which the photons are allowed
or forbidden respectively to propagate in the medium. It
is well known that any periodic structure with a length
scale comparable to that of the wavelength of the parti-
cle would coherently scatter and form energy bands in a
medium that provides a periodic scattering potential [7].
In the PBG structures the waves are Bragg scattered and
if the scattered waves from different layers interfere de-
structively, they give rise to a gap.

a e-mail: manianvs@iitm.ac.in

The PBG structures are characterized by three im-
portant parameters viz. periodicity of the geometric ar-
rangement, dielectric contrast and filling fraction. The pe-
riodicity of the geometric arrangement is decided by the
wavelength of the electromagnetic spectrum of interest.
In the microwave region, the periodicity is expected to be
between 0.3 mm and 100 cm. McCall and Platzman [8]
utilized alumina rods in the square periodicity with a
lattice spacing of 1.27 cm for observing a gap around
10–12 GHz. Apart from the periodicity of the dielectric
constant, it is necessary to have a good dielectric contrast
(ratio between the dielectric constant of sample and back-
ground material) between the background material and
the sample used in the structure [9]. Interestingly, this de-
gree of contrast varies with the dimension of the structure.
Yablonovitch and Gmitter [10] suggested that the contrast
should be nearly 3.5 for a 3-dimensional structure for the
formation of band gap. The width of the gap depends on
the filling fraction (the fractional volume occupied by the
dielectric samples to that of the background material in
an unit cell) of the given structure. It is important to have
an optimum filling fraction for the maximum width of the
band gap. This optimum filling fraction varies with the
dielectric contrast [11].

Most of the theoretical formulations for the band gap
calculations involve a non-lossy medium. But in reality,
as all the materials absorb some radiation, the dielectric
loss of the material should also be taken into considera-
tion. The theoretical analysis by Sigalas et al. [12] shows
an increase in the width of the gap with the dielectric loss
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while the position of the gap remains unchanged. More-
over, there is a reduction in the transmitted power levels
due to absorption.

As in the case of defects in electronic crystals, one can
have defects in PBG structures also. These defects can
be created either by removing or adding a material into
the lattice, thereby disturbing the periodicity. This may
result in the appearance of extra modes in the forbidden
frequency range or a change in the power levels. Depend-
ing on the position of the defect and the number of defects
that are created, the change in the power levels is either
more or less. By addition of material, if a defect mode is
created, then it is referred to as a donor mode and if the
material is removed to form a defect mode, it is referred
to as an acceptor mode [13]. Defects can also be created
either by changing the refractive index or by changing the
size of the rods (in diameter) or even by removing the
rods [14].

As mentioned earlier, while several literatures deal
with the non-lossy medium for the PBG structures at mi-
crowave frequency, only few are available on the analysis of
the structure with loss [12,15]. Moreover, to understand
the effect of loss on the PBG structure, it is necessary
to compare the theoretical analysis with the actual ex-
perimental data. Therefore, an effort has been made to
construct a PBG structure suitable for the microwave fre-
quency, known as Microwave Band Gap (MBG) structure,
using a lossy dielectric material. In this paper, we report
the transmission spectra obtained between 10 and 20 GHz
for two dimensional square and triangular MBG structures
using glass as the lossy dielectric medium (ε′r = 5.5 and
ε′′r = 0.1). The results are compared with the theoret-
ical data obtained using plane wave method. The paper
also discusses the results obtained for the above structures
with the introduction of acceptor defects.

2 Experimental set-up

A microwave vector network analyzer (HP 8720A) was
used to obtain the S12 parameter between 10 and 20 GHz
with the help of two horn antennas kept on either side of
the structure. The antennas were separated by a distance
of 50 cm. The fringe effects of the electric field were as-
sumed to be minimum. Initially, the S12 parameter was
normalized without any structure between the antennas.
For all the experiments, an E-polarized beam (with elec-
tric field parallel to the length of the rod) was used.

The structure was prepared by cylindrical glass rods
of diameter 0.414 cm and length 15 cm. The dielectric
contrast in the present case was 5.5. The square and tri-
angular (hexagonal) structures with three different lat-
tice constants 2.5, 1.4 and 0.9 cm were constructed using
10×10 matrix elements. These matrix arrangements were
then placed between the horn antennas and the trans-
mission spectra were recorded. The acceptor mode defect
structures were also studied for all the above structures.

3 Theory

Of the many theoretical formulations such as Plane Wave
Method for band structure calculations [16] and Transfer
Matrix Method for band structure calculations as well as
for transmission spectrum [17], we have used the plane
wave method because of the simplicity involved in this
method. In this method, we assume a lattice consisting
of infinitely long, parallel dielectric rods of dielectric con-
stant εa, each with a circular cross section of radius R
embedded in a background dielectric material of dielectric
constant εb. We also assume the structure to be infinite
though in practice it is limited. The intersections of these
rods with a perpendicular plane form the square or trian-
gular lattice. The electromagnetic waves are assumed to
propagate in a plane perpendicular to the rods and only
E-polarization (electric field parallel to the rods) is con-
sidered here.

The Maxwell’s equations in frequency domain can be
written as

∇× �E (�x) − iω

c
�H (�x) = 0

∇× �H (�x) +
iω

c
ε (�x) �E (�x) = 0. (1)

Using these two equations one can obtain the equation in
terms of electric field as

1
ε (�x)

∇×∇× �E (�x) =
ω2

c2
�E (�x) . (2)

As the spatial dependence exists only in two dimensions,
say, x1x2 – plane, we can write

∇× �E = x̂1
∂E3

∂x2
− x̂2

∂E3

∂x1
(3)

where E3 is the component of electric field along x̂3 and

∇×∇× E = −x̂3

(
∂2E3

∂x2
1

+
∂2E3

∂x2
2

)
. (4)

Substituting in equation (2) and using

E (�x, t) = E0 (�x|ω) e−iωt = (0, 0, E3 (�x|ω)) e−iwt, (5)

H (�x, t) = H0 (�x|ω) e−iωt

= (H1 (�x|ω) , H2 (�x|ω) , 0) e−iωt, (5a)

we obtain the equation for E3 as

1
ε (�x)

(
∂2

∂x2
1

+
∂2

∂x2
2

)
E3 +

ω2

c2
E3 = 0. (6)

Expanding ε−1 (�x) in Fourier space as

1
ε
(
�x||

) =
∑
�G||

K̂
(

�G||
)

ei �G||·�x|| (6a)

where �G|| is a reciprocal lattice vector and K̂
(

�G||
)

is the
Fourier coefficient.
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The reciprocal lattice vector �G|| is given by �G|| =
h1

�b1 +h2
�b2 where �b1, �b2 are the corresponding lattice vec-

tors along x̂1 and x̂2 respectively and h1, h2 are integers.
Writing E3 (�x|ω) according to Bloch’s theorem as

E3 (�x|ω) =
∑
�G||

B
(
�k|| + �G||

)
ei(�k||+�G||)�x we can concen-

trate on the values of �k|| that are in first Brillouin Zone.

The Fourier coefficients K̂
(

�G||
)

are given by

K̂
(

�G||
)

=
1
εa

f +
1
εb

(1 − f), if �G|| = 0 ;

K̂
(

�G||
)

=
(

1
εa

− 1
εb

)
f

2J1

(
|�G|||R

)

|�G|||R
if �G|| �= 0

(6b)

where J1 is a Bessel function of first kind, f is the fill-
ing fraction given by f = πR2

a2 for a square lattice and
f = 2√

3
πR2

a2 for a triangular lattice. where a is the lattice
constant.

The equation satisfied by the coefficients
B

(
�k|| + �G||

)
is

∑
�G||

K̂
(

�G|| − �G
′
||
)
B

(
�k|| + �G

′
||
) ∣∣∣�k|| + �G

′
||
∣∣∣2 =

(
ω2

c2

)
B

(
�k|| + �G||

)
. (7)

To have a symmetrical eigen value problem with real eigen
vectors, we can write

C
(
�k|| + �G||

)
= B

(
�k|| + �G||

) ∣∣∣�k|| + �G||
∣∣∣ . (8)

Then equation (6) becomes

∑
K̂

(
�G|| − �G

′
||
)
|�k|| + �G||||�k|| + �G

′
||| C

(
�k|| + �G

′
||
)

=(
ω2

c2

)
C

(
�k|| + �G||

)
. (9)

For a given vector �k|| and a set of vectors �G||, equation (9)
represents an eigen value problem from which we can find
the eigen values (ω2/c2). The band structures for the wave
vector along Γ −X for the square and Γ −M for the trian-
gular lattice were considered to coincide with the measure-
ment direction. The band gap formation between 10 and
20 GHz only were taken into consideration for comparing
with experimental results. A typical band structure ob-
tained for 0.9 cm square and triangular lattices are shown
in Figures 1 and 2.

It is very well known that PBG structures have no
particular length scales and so it is always possible to
use the scaling property of the electromagnetic equations
to calculate the position of the mid-gap frequency. The
theoretical results obtained for the same lattice structure

Fig. 1. The band structure of a 0.9 cm square lattice computed
using plane wave method. The inset shows the first Brillouin
zone for the square lattice.

Fig. 2. The band structure of a 0.9 cm triangular lattice
computed using plane wave method. The inset shows the first
Brillouin zone for triangular lattice.

but with different spacing and dielectric constant are com-
pared with the present results by using the scaling prop-
erty. The methodology of scaling for both lattice spacing
and dielectric constant is explained below [9].

The master equation for calculating the band gaps can
be obtained from Maxwell’s equations as

�∇×
(

1
ε (r)

�∇× �H(r)
)

=
(ω

c

)2
�H(r). (10)

If the new lattice parameter is r′ (r′ = slr, where sl is the
scale parameter), then equation (10) is modified as

sl
�∇′ ×

(
1

ε(r′/sl)
sl

�∇′ × �H(r′/sl)
)

=
(ω

c

)2
�H(r′/sl)

(11)
where �∇′ = �∇/sl.
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Dividing out the sl’s shows that

�∇′ ×
(

1
ε′(r′)

�∇′ × �H(r′/sl)
)

=
(

ω

csl

)2

�H(r′/sl). (12)

This is similar to the equation (10) where the new
frequency is scaled by a factor sl such that ω′ = ω/sl.

Following the similar procedure one can arrive at the
following equation for scaling the dielectric constant

�∇ ×
(

1
ε′(r)

�∇ × �H(r)
)

=
(sdω

c

)2
�H(r) (13)

where ε′ (r) is the new dielectric constant (ε′ (r) =
ε (r)/s2

d) and s2
d is the scaling factor for dielectric constant.

The frequencies are all scaled for this case by sd such that
ω′ = sdω. Therefore, by following this procedure one can
predict the mid-gap frequency for a given structure from
the already available experimental or theoretical data.

4 Results

4.1 Square lattice

In the spectrum obtained with the square lattice of spac-
ing 2.5 cm (filling fraction 2.2%), two sharp gaps as
shown in Figure 3 were observed at 10.19 GHz (gap width
0.24 GHz) and 12.39 GHz (gap width 0.3 GHz). Plane
wave method predicts only one gap centered at 10.53 GHz
with a width of 1.1 GHz.

With a lattice constant of 1.4 cm (filling fraction 6.9%),
only one band gap of width 4.2 GHz centered at 17.42 GHz
is observed as shown in Figure 4. In this case, plane wave
method predicts a gap at 16.42 GHz with a width of
3.46 GHz.

With the lattice constant of 0.9 cm (filling fraction
16.6%), the gap width increases to 4.4 GHz centered at
13.39 GHz as shown in Figure 5. The theoretical predic-
tion by plane wave method points out a gap centered at
12.9 GHz with a width of 4.68 GHz. One can also observe
that there is an improvement in the spectrum in terms of
gap width as the filling fraction is increased.

Plihal et al. [16] calculated the band structures for a
dielectric contrast of 5 and filling fraction of 0.189 for a
square lattice using the plane wave expansion method.
Using the scaling methodology for dielectric constant as
well as lattice parameter, the calculations were performed
for the midgap frequencies for the three lattice parame-
ters. Accordingly, the midgap frequency for 2.5 cm lattice
was calculated as 4.85 GHz. Since our scanned frequency
range starts from 10 GHz onwards, this gap could not
be observed at this frequency. For 1.4 cm lattice struc-
ture, the gap should appear at 8.65 GHz, which also
could not be observed within the scanned frequency range.
For 0.9 cm lattice, the midgap frequency observed at
around 13.39 GHz agreed well with the expected value
of 13.45 GHz.

Fig. 3. The transmission spectrum of 2.5 cm square lattice
with and without defects. The solid line corresponds to the
spectrum without defects and the broken line corresponds to
the spectrum with the defects at (3,4), (4,7), (5,7), (7,4), (8,2)
and (8,8).

Fig. 4. The transmission spectrum of 1.4 cm square lattice
with and without defects. The solid line corresponds to the
spectrum without defects and the broken line corresponds to
the spectrum with the defects at (4,3) and (4,8).

4.2 Triangular lattice

Figure 6 shows the arrangement of the triangular lat-
tice. For a lattice constant of 2.5 cm, the spectrum,
shown in Figure 7, shows two sharp gaps at 11.52 GHz
and 16.08 GHz with a width around 0.29 GHz and
0.85 GHz respectively. The theory predicts a gap centered
at 10.84 GHz with a gap width of 0.18 GHz.

Figure 8 gives the transmission spectrum for 1.4 cm
lattice. It may be observed that the width of the gap
is 2.6 GHz and is centered at 16.76 GHz whereas the
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Fig. 5. The transmission spectrum of 0.9 cm square lattice
with and without defects. The solid line corresponds to the
spectrum without defects and the broken line corresponds to
the spectrum with the defect at (2,5).

Fig. 6. The triangular lattice arrangement.

theoretical value of midgap frequency is 17.10 GHz with
a gap width of 2.39 GHz.

With 0.9 cm lattice, the gap width is observed to be
around 4.4 GHz centered at 14.58 GHz as shown in Fig-
ure 9. The band structure shows a band gap centered at
14.1 GHz with a gap width of 6.18 GHz in the Γ–M di-
rection for this lattice structure as shown in Figure 2.

Plihal and Maradudin [18] reported that for a triangu-
lar lattice of dielectric contrast 5, in E-polarization, the
band gap was centered at 5.99 GHz. The lattice spac-
ing used in this case was 2.32 cm with a filling fraction
of 0.169. As the dielectric constant in the our case was
5.5, and the lattice constants were different, the mid-gap
frequencies for all the three structures of varying lattice

Fig. 7. The transmission spectrum of 2.5 cm triangular lattice
with and without defects. The solid line corresponds to the
spectrum without defects and the broken line corresponds to
the spectrum with the defect at (4,6).

constants were calculated based on the values reported by
Plihal and Maradudin [18] using the scaling methodology.
For 2.5 cm lattice structure, the midgap frequency was
expected to be at 5.26 GHz, which could not be observed
experimentally within the scanned frequency range. For
1.4 cm lattice structure, the expected midgap frequency
is 9.38 GHz, which also could not be observed within
the scanned frequency range. For 0.9 cm lattice structure,
the midgap frequency was observed to be at 14.58 GHz,
which is in excellent agreement with the predicted value
of 14.59 GHz.

Using the experimental results obtained in our case for
0.9 cm lattice spacing, scaling procedure was applied for
2.5 and 1.4 cm lattice spacings. It may be noted that the
obtained midgap frequencies viz. 5.24 and 9.37 GHz for
2.5 and 1.4 cm lattice spacing respectively agree well with
the values obtained with the scaling procedure based on
the values reported by Plihal and Maradudin [18].

4.3 Square lattice with defects

The acceptor defects introduced for the 2.5 cm lattice re-
sulted in an increase in the power levels of the gaps ob-
served at 10.19 GHz and 12.39 GHz when compared to
the pure structure as shown in Figure 3. It is expected
that as an acceptor defect is introduced, there must be a
mode in the gap region. But in this case, as the gap is
sharp, it may not be possible to observe the defect mode.
Figure 3 shows the disappearance of both gaps when six
defects were introduced at (3,4), (4,7), (5,7), (7,4), (8,2),
(8,8) [(m,n) represents mth row and nth column].

With the structure of lattice constant 1.4 cm, two ex-
tra modes appeared within the band gap, as shown in
Figure 4, as defects were introduced at (4,3) and (4,8).
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Table 1. Comparison between theoretical and experimental values for midgap frequencies in square and triangular lattices.

Lattice Spacing (cm)/ Theoretical value of Mid-gap Experimental value

type Filling fraction midgap frequency frequency using of the present work

(%) (GHz) scaling procedure (GHz) (Width in

(Width in GHz) (GHz) GHz and Error % in

mid-gap frequency)

Square 2.5/0.022 10.58 (1.1) - - - 10.19 (0.24) (<5%)

lattice - - - - - - 12.32 (0.3)

1.4/0.069 9.49 - - - - - -

16.62 (3.46) - - - 17.42 (4.2) (<5%)

0.9/0.166 12.90 (4.68) 13.45 13.39 (4.4) (<5%)

Triangular 2.5/0.025 10.85 (0.18) - - - 11.50 (0.29) (6%)

lattice - - - - - - 16.10 (0.85)

1.4/0.079 10.57 - - - - - -

17.10 (2.39) - - - 16.80 (2.6) (<2%)

0.9/0.192 14.10 (6.18) 14.59 14.58 (4.4) (<5%)

Fig. 8. The transmission spectrum of 1.4 cm triangular lattice
with and without defects. The solid line corresponds to the
spectrum without defects and the broken line corresponds to
the spectrum with the defects at (1,7) and (2,4).

In 0.9 cm lattice constant structure, extra mode appeared
within the band gap with the introduction of only one de-
fect at (2,5) as shown in Figure 5. The width of the defect
mode is around 1 GHz.

4.4 Triangular lattice with defects

Figure 7 gives the transmission spectrum of a triangular
lattice of 2.5 cm lattice constant, when a defect was intro-
duced at (4,6). The power level corresponding to the dip
at 10.6 GHz decreased, indicating a pseudo gap. However,
the gaps at 11.5 GHz and 16.1 GHz showed an increase
in the power levels. With the structure of lattice constant
1.4 cm, no new mode was observed with the introduction

Fig. 9. The transmission spectrum of 0.9 cm triangular lattice
with and without defects. The solid line corresponds to the
spectrum without defects and the broken line corresponds to
the spectrum with the defects at (4,7) and (5,5).

of defects at (1,7) and (2,4), but an increase in power level
by 5 dB was observed as shown in Figure 8. With the in-
troduction of defects in the structure of lattice constant
0.9 cm at (4,7) and (5,5), an extra mode was observed
(Fig. 9).

5 Discussion

Table 1 gives the comparison between the band gaps ob-
tained using plane wave method, using scaling procedure
and experimental values for the midgap frequencies for all
the lattice constants. It may be observed that there is a
good agreement between the theoretical and experimen-
tal values with respect to the mid-gap frequency whereas
there is a poor agreement in terms of gap width. The
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discrepancy in the width may be due to (a) the lossy na-
ture of the samples and (b) finiteness of the structure. It
is well known that plane wave method is suitable for infi-
nite lattice structures and does not account for loss in the
samples [15].

In general, it may be observed that for a higher filling
fraction, the band gap becomes clearly visible. The fluctu-
ations in the insertion loss within the band gap decreases
for a triangular lattice compared to square as the triangu-
lar lattice has greater symmetry than that of square lat-
tice. In most of the cases, the attenuation of power within
the band gap was around 30 to 40 dB for a 10-layer struc-
ture. Beaky et al. [19] reported that the transmissivity
decreases with increase in refractive index. The insertion
loss of the structure is given as 10 logn dB per lattice
plane, where n is the refractive index. In the present case
for ε = 5.5, the total insertion loss for 10 layers is 37 dB
which agrees well with the experimental observation.

The defect modes that appeared for both square and
triangular lattices are not as sharp as reported by McCall
and Platzman [8]. A higher width for defect modes has also
been reported for square alumina rods by Ozbay et al. [20].
In the present case, it has been suggested that the lossy
nature of the dielectric increases the width of the defect
mode (approximately 1 GHz). As it is well known that
the plane wave method and the scaling methodology do
not take into account the lossy nature of the sample, the
width of the gap is a function of both dielectric contrast
as well as loss factor of the sample. The lossy nature of
the sample attenuates the electromagnetic radiation and
depth of gap may not be as prominent as that of non-lossy
structures.

Appearance of no extra modes due to the creation of
defects in 1.4 cm triangular lattice indicates that apart
from the filling fraction, the position of defects plays an
important role in the appearance of the new modes. If the
defect is near the source, there will be a drastic change in
the spectrum while it may not be the case if it is near the
detector. This is because the probability that the incom-
ing waves will experience the sample rod near the source
will be more when compared to that at the detector after
undergoing scattering within the structure. For a larger
structure, one may expect the position of the defect to
play a less significant role.

6 Gap to mid-gap ratio

Villeneuve and Michel Piche [21] proposed theoretically
that the gap to mid-gap ratio for 2-D cylindrical rods ar-
ranged in a square lattice saturates approximately at 0.1
for a dielectric contrast of 5. McCall and Platzman [8]
obtained a gap to mid-gap ratio of 0.14 for a filling frac-
tion of 0.45 for alumina rods arranged in square lattice.
Both the above mentioned work dealt with very low loss
dielectric samples.

Figures 10 and 11 show the variation of the gap to
mid-gap ratio obtained using plane wave method as well
as experimentally with filling fraction for square and tri-
angular lattices respectively.

Fig. 10. The variation of gap to mid-gap ratio with filling
fraction for square lattice.

Fig. 11. The variation of gap to mid-gap ratio with filling
fraction for triangular lattice.

It may be generally observed that the gap to mid-gap
ratio increases with filling fraction till it reaches a maxi-
mum value and then decreases. In the case of square lat-
tice, the complete band gap could not be observed for
higher filling fraction whereas along the Γ-X direction,
there is a finite value of the band gap observed. This means
that when the receiver antenna is kept along Γ-X direc-
tion, it is still possible to get the band gap around 17 GHz.
By rotating the antenna towards X-M direction, the gap
narrows down and the gap width subsequently becomes
zero. The optimum filling fractions are 0.21 and 0.28 for
the complete band gap and band gap along Γ-X direction
respectively. Along Γ-X direction, the optimum gap can
be observed for 0.7 cm lattice spacing. It may be observed
that the experimental results are following closely to that
of Γ-X direction as expected.
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In the case of triangular lattice, complete band gap
indicates the optimum filling fraction around 0.19 per-
taining to 0.9 cm lattice spacing whereas the band gap
along Γ-M direction indicates the optimum filling fraction
around 0.24 pertaining to 0.8 cm lattice spacing. The ex-
perimental results are following closely to that of Γ-M di-
rection as expected.

Conclusions

The spectral response of the electromagnetic radiation be-
tween 10 and 20 GHz has been studied for square and
triangular structures with three different spacings using
cylindrical glass rods. The observed microwave band gaps
for the above structures are compared with the theory
and found to have good agreement. Though the material
used in the present work is having some dielectric loss,
the plane wave method suits well for predicting the po-
sition of midgap frequency of the band gap. The varia-
tion of gap to mid-gap ratio with filling fraction (for both
square and triangular structures) indicates that for a spe-
cific dielectric material there may be a rapid increase in
the ratio for smaller value of filling fraction and attains a
peak at optimum filling fraction and decreases for higher
filling fraction. It is also suggested that the loss tangent
of the material and dielectric constant are responsible for
the depth and width of the gap. For a finite lattice, the
appearance of the defect mode is found to be position de-
pendent. As the defect forms a local resonator, the width
of the defect mode may be attributed to the loss tangent
of the material.
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